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Data: CDIAQ/GCP/IPCC/FUSS et al 2014

100 - Scenario categories - > ) ?E_ FS)%‘%
———>1000 ppm Cozeq 0O relative to 1850-1900
% 720-1000 ppm e
= 8071  580-720 ppm L i
B ) 480-580 ppm =
O % 60 —— 430-480 ppm 2 !
S = >——> RCP6
= O 2015 Estimate 2.0-3.7
w £ 401 -
C o
O o
n
o 2 .
E 5 2000 :
E @il o ~—— RCP4
Historical emissions 1.7-32°C
0 S==——— RAP2.6
net-negative global emissions N \\ — W 9-2.3°C
~20 : ; : : : :
1980 2000 2020 2040 2060 2080 2100

CO,
removal



So, what does net zero mean?

The term net zero is so ubiquitous as to be meaningless
- Zero greenhouse gas emissions?

- Net zero greenhouse emissions

- No fossil carbon in the energy system?

- Only wind, water, and solar energy?



The Road to Net Zero

Countries with laws, policy documents or concrete timed
pledges for carbon neutrality by target year

ﬁ»\-’;“:‘-
s
Suriname
Guinea-
;828 Bissau
| o ®
2053 L Liberia &

2050
2045
2040
2035

|
2030

JE Achieved
]

Benin

Source: Energy & Climate Intelligence Unit

@®E statista %a




Net zero emissions target announcements
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Greenhouse gas emissions Sl
Greenhouse gas emissions include carbon dioxide, methane and nitrous oxide from all sources, including agriculture
and land use change. They are measured in carbon dioxide-equivalents’ over a 100-year timescale.
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Source: Calculated by Our World in Data based on emissions data from Jones et al. (2023)
Note: Land use change emissions can be negative.
OurWorldInData.org/co2-and-greenhouse-gas-emissions « CC BY

1. Carbon dioxide-equivalents (CO:eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse gas
emissions, researchers express them in ‘carbon dioxide-equivalents' (CO:eq). This takes all greenhouse gases into account, not just CO.. To express all
greenhouse gases in carbon dioxide-equivalents (CO:eq), each one is weighted by its global warming potential (GWP) value. GWP measures the amount
of warming a gas creates compared to CO.. CO: is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of that gas would generate
ten times the warming effect as one kilogram of CO-. Carbon dioxide-equivalents are calculated for each gas by multiplying the mass of emissions of a
specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate CO.eq over 100 years, we’'d multiply each
gas by its GWP over a 100-year timescale (GWP100). Total greenhouse gas emissions — measured in CO.eq — are then calculated by summing each
gas’ CO:eq value.
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Greenhouse gas emissions Our World

in Data
Greenhouse gas emissions include carbon dioxide, methane and nitrous oxide from all sources, including agriculture
and land use change. They are measured in carbon dioxide-equivalents' over a 100-year timescale.

China China: 8t erson
10 billion t co2/P
United States USA: 18 t erson
5 billion t co2/P
e India: 2.5 t.,,/person
2 billion t
1 billion t
LA
500 million t 0
United Kingdom UK: 6.3 too,/person
AN =
200 million t \/w//
1850 1880 1900 1920 1940 1960 1980 2000 2021

Source: Calculated by Our World in Data based on emissions data from Jones et al. (2023)
Note: Land use change emissions can be negative.
OurWorldInData.org/co2-and-greenhouse-gas-emissions « CC BY

1. Carbon dioxide-equivalents (CO:eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse gas
emissions, researchers express them in ‘carbon dioxide-equivalents' (CO:eq). This takes all greenhouse gases into account, not just CO.. To express all
greenhouse gases in carbon dioxide-equivalents (CO:eq), each one is weighted by its global warming potential (GWP) value. GWP measures the amount
of warming a gas creates compared to CO.. CO: is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of that gas would generate
ten times the warming effect as one kilogram of CO.. Carbon dioxide-equivalents are calculated for each gas by multiplying the mass of emissions of a
specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate CO:eq over 100 years, we’d multiply each
gas by its GWP over a 100-year timescale (GWP100). Total greenhouse gas emissions — measured in CO.eq — are then calculated by summing each
gas’ CO:eq value.



Global greenhouse gas emissions by sector SAkE

. . . - i in Data
This is shown for the year 2016 — global greenhouse gas emissions were 49.4 billion tonnes CO,eq.
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Global primary energy consumption by source Our World
Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil fuel

production by converting non-fossil energy into the energy inputs required if they had the same conversion losses as
fossil fuels.

—| Other
‘L renewables
160,000 TWh —L Modern biofuels
Solar
Wind
140,000 TWh Hydropower
Nuclear
— Natural gas
120,000 TWh
100,000 TWh
Coal
|
60,000 TWh [
40,000 TWh Biomass
age — Coal
20,000 TWh ’ A
~_ Traditional
biomass

0 TWh

1800 1850 1900 1950 2021

Source: Our World in Data based on Vaclav Smil (2017) and BP Statistical Review of World Energy OurWorldInData.org/energy « CC BY






Europe, excess deaths v average temperatures
Winter 2022-23 compared with 2015-19, three-week moving average

Excess deaths

5

i Average*

Official covid-19 deaths*

10 per 100k

Temperature change

f Average*
\ /

5°C

Nov | Dec Jan

149,000 total excess deaths, explained by:

Rise in energy prices Covid-19
68,000 59,700

*EU-27 (excepl Malta and Cyprus) plus Britain, Norway and Switzerland

Feb

Other
21,500

https://www.economist.com/graphic-
detail/2023/05/10/expensive-energy-may-have-
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https://www.economist.com/graphic-detail/2023/05/10/expensive-energy-may-have-killed-more-europeans-than-covid-19-last-winter
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Progress since the 2015 Paris Agreement

2015 2021

Other: 12%

Other: 12%

Fossil: 86% Fossil: 83%

Net zero coverage 88% Increase

Global energy use 150,000 TWh 163,000 TWh ~ 9% Increase
% Fossil energy used 86% 83% ~ 3% decrease
Absolute fossil energy used 130,000 TWh 136,000 TWh ~ 5% increase

CO, emissions 53.66 Gt 54.59 Gt ~ 2% increase
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Look again at where GHGs come from
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The role of CCS in net zero is unequivocal

Role of CCS in Scenarios (2050)

IPCC: IPCC: Middleof  IPCC: Resource IEA: 2DS |[EA: B2DS
Sustainability the Road (P3) and Energy
Oriented (P2) Intensive [P4)



CCS provides optionality in the transition
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Technology adoption pathway
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Not an exhaustive list of technologies Bui, M., et al. (2018). Energy & Environmental Science, 11 (5), 1062-1176.
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CCS development: technology readiness level (TRL
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Not an exhaustive list of technologies Bui, M., et al. (2018). Energy & Environmental Science, 11 (5), 1062-1176.
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Solvent development has a long history...
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Energy system optimisation (ESO) framework ES&
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Heuberger, C. F., et al. (2016). Energy & Environmental Science, 9 (8), 2497-2510, Heuberger, C. F. & Mac Dowell, N. (2018). Joule, 2 (3), 367-370, Heuberger, C. F., et al. (2018). Nature Energy, 3 (8), 634-640.
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Energy system optimisation (ESO) framework
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Mersch, M., Markides, C. N., Mac Dowell, N., “The impact of the energy crisis on the UK’s net zero transition” iScience, 2023, Ganzer, C and Mac Dowell, N, “Pathways to net zero for power and industry in the UK”, Int J GHG Con, 2023
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No one size fits all
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Discerning the probable from the possible..?

Thermal plants
efficiency
Hourly input data clustering:
Tech. cost 1. .Electr|C|‘Fy d(.at"nand
2. iRES availability

3. Imported electricity price
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Scenario reduction
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Grossmann, et. Al. 2010 -
: ESO Database:
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.- parameters: unit capacity, E

v learning rate, technology
Scenario collection: costs, carbon price floor, .
for x in efficiencies, n = 5 fuel price, :tca Electricity Systems
.y i _ 2. System wide data: " .
for yintechnology costs, n =42 = : imi ion Framework :
for zin fuel prices, n = 100 existing capacity, reserve Opt satio ame _ 0 3
update x, v, and z in each run and inertia requirements _
- A
- -
v Iy - 3
Decarbonisation drivers: = oo N
1. The Carbon Price Floor 126,000
(CPF),n=3 -
scenarios

2. CCSDeployment, n=4




Quantifying the value of CCS (JAMALI)
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Value # cost
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Value of CCS is context specific
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Heuberger, et al, Computers and Chemical Engineering, 2017



What do we need from technology?
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Schnellmann, et al., Int ) GHG Con, 2018



Should we believe in unicorns?

* Modelling often assumes perfect foresight
* This is not the world we live in...

* Can we trust in technological optimism?
 What is the least regrets strategy?



Perfect foresight capacity expansion
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Capacity Installed (GW)
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Myopia in planning affects operation and cost

Total System Cost (%)
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fori..s € {CCS coventional +
novel technologies}

Data input:

1. Technology costs
2. Efficiency

3. CCS capture rate
4. CO, intensity

Unicorn hunting
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CCGT-CCS still appears to be a dominant technology
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Pratama and Mac Dowell, One Earth, 2022



s there a unicorn worth waiting for?
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Outline

* The socio-economic dimension



Value of CCS in future energy systems

CO, Storage Services
Balance of Trade (for 3rd Countries) £8bn

Policy and decision
makers are looking

£9bn Exports — Imports
(CCS supported) £1bn

for CCS results in costs
£4.8 of societal & (CAPEX
economic benefit. & OPEX)

£95bn

]
1
1
1
1
for tangible é : .
. _f'_ o E Environmental Health/Wellbein
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1
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Hackett, Industria Mundum, 2018 http://www.ccsassociation.org/news-and-events/reports-and-publications/clean-air-clean-industry-clean-growth/
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Technology cost break-down

Value chain Socio-economic Electricity system Impact
mapping analysis optimisation analysis
@\ Fa Y Fa Y Fa Y

p ' @® Construction
Y Machinery and equipment
CAP EX Site and general facilities O P EX . n.e.c.
o] Maintenance and repairs
N o ® Electrical equipment
Engineering
Gas, water & electricity Finance
/ \ supply
! | CO, pipeline & @ Transport and storage
| |
/ @ Maintenance of machinery
N
D Chemicals @® Mining
Capture unit / ® Chemicals and
Pharmaceutical products
Generator
@  Utilities

Global CCS Institute, 2014

CCGT: Combined Cycle Gas Turbine
CCS: Carbon Capture and Storage



Jobs and Economic Development Impacts (JEDI)

Value chain Socio-economic Electricity system Impact
mapping analysis optimisation analysis
o O O

Sector Disaggregation

A
4 . : : i
"|"|.-.| h ]iiil Socio-economic Requirement matrix
indicators
4 = Aip Ay
*  Input output tables Lj — A A;;
+  Gross Value Added Lt =
@] +  Employment rate _
Direct Impact “NREL e i L= (I—Ai,j) 1
VAc;+ = Output;s X %VA; . Labour share of GVA
Jobs, ; © Wages i,j = sectors

Labour composition

B z VA, i+ X Y%HumanCapital,; X %Labor; g
B - Wages,; s

¢ = country,i = sectors,t = year, s = skill level

zhea £ps @

ureau of Economic Analysis



ESO - JEDI framework

Socio-economic impacts of energy transition

~ ESO model — ESO - JEDI
Technology portfalio: Vtech € {NGCC,NGCC w CCS}
. V sectar € {mining, construction}
= Fossils (coal, NGCC) g‘:,:;x . Gross Value
= Renewables (Solar, Hydro, :
Wind) ( 4 * Capacity factor ———  added (GVA)
Bi * Installed capacity * Labour Earnings
' bloenergy * Di * Jobs created
* Nuclear Discount rate
* Fossils wCCS ¥ tech € {NGCC,NGCC w CCS}
= BECCS

Objective function: ES

= Cost minimization
= Social value maximization:

e Electricity Systems
Optimisation Framework

Optimization framework:

® Perfect foresight
= Endogenous tech learning
= Timeframe: 2015-2050

Imported commodities
(components, fuels, services)

Patrizio, Pratama and Mac Dowell, Joule, 2020



Least cost energy transition pathways
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Creating value with the transition
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Trade-offs with SDGS goals
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Outline

* Thoughts on CCS project development



What is the cost of CCS?

90

80 -

— [ ]
0 T T T T T T T T |
Capture Storage onshore offshore shipping

Costs of capture based on IEA (2012b); Cost and Performance of Carbon Dioxide Capture from Power Generation. Paris: IEA.
http://www.iea.org/publications/freepublications/publication/costperf ccs powergen.pdf



http://www.iea.org/publications/freepublications/publication/costperf_ccs_powergen.pdf

CO, capture is one element of the CCS system

n Enhanced
Oil
Recovery
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g * / removal
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10.

A “few” key questions...

Where is the store?

What are the permitting
requirements to develop the store?

12.

Is the store proven?
Who owns the store?
Who will operate the store?

Who will provide whole-life MRV for
the store?

14.
15.

How do you get to the store?

What happens if, during project
operation, the store becomes

unavailable for a period? Who covers 16.

this risk?

Are you the only one using the store,
or are you part of a hub? 1

Who provides the CO, transport
service?

11.

13.

What are the permitting and
regulatory requirements to deliver
the transport service?

What are the CO, purity
requirements of the T&S operators?

What happens if, during project
operation, the transport becomes
unavailable for a period? Who covers
this risk?

How much CO, is produced?

20.

Is flue gas produced in a steady flow, 54
dynamically, or batch-wise? '

Including solids and trace elements,
what is the composition of the flue
gas?

7. Is CO, concentration static, or

dynamic?

18. What are the options for CO,

19.

capture technology?

What is the basis for technology
provision, i.e., total asset
management, or other? What level
of performance guarantee is
provided?

How much does this cost? How have
individual choices impacted cost?
How can cost be minimised without
increasing technology or engineering
risk.

What is the business model?

22. How will you pay (balance sheet,

grant, debt)?

23. ...
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National Grid Carbon | Pig-Trap D . Option Agreement Limited leidng aStorage ”|  insurers etc. [TBC]
Limited *—Sublease rax “[OFF Site Lease, Laydown Lease, Operating Agresment
Easements)
Power Offtake Services
N Q&M Agreement Power Purch.
BOC ASF O&M Sub-Contract Q&M Supplier _ Aﬁm:m *  Power Offtaker [TBC] —>| GB Wholesale Power Market |
(including ASP [TBC] -
major maintenance) Grid C chicn
2 ) ) r,:;g;n;.zml ¥ NGET (as TSO) —bl GB 400 kV Transmission System |
GE Services  [¢—=- ij';rre Mainfenance | ThUoS Agreement
Emissions Trading Services
. EU Emissions | . .
Sub-contractors, technology Supply-Side Hllowance Agresment * EUA Offtaker [TBC] }—>| EU Emissions Trading System |
licensors, insurers etc [TBC] | L
OPP EPC Agreement ) Project Management Services
) . i GE ot Project Management
Linde Engineering (ASU) Services Agreement : :
*  Project Management Services [TBC]
. Inter-Connections EPC
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a: Generic asset development sequence

Lead time: 2-10+ years
A

r ) 1-10 years 20-50+ years

.?.. #., i ' Finance Construction Operations

¢ ‘

Abandon Abandon Abandon Abandon

b: Counterparty risk and chicken-or-egg interdependency is successfully managed in an integrated carbon capture and storage project (6)

Lead time: 6-8 years

r ! ) 2-5+ years 20-50+ years
CO2 -~
. 3 Field Permits & . .
stor'agf . : ‘ Site Appraisal f’ Development A Construction Operations
projec

Lead time: 4-6 years

*  Pipeline developers initiate projects
with sufficient confidence that they
can offtake their CO2 for storage. 02

transport €@-

*  Risk-tolerant developers may initiate project
a routing study aofter successful basin
exploration by the storage entity.

1 \ 2-5+ years 20-50+ years

P T ——

Permits &

.?.

Fin Construction Operations

Lead time: 3-5 years

B A —

r z - 2-5+ years 20-50+ years
*  Capture developers initiate projects with sufficient confidence C02 ek
. e ' - »
that they can offtoke their CO2 for transport and storage. A capture - Feasibility < Construction Operations
large storaoge hub could initiate a cluster of capture projects. project

Uden, et al, Energy Environ. Sci., 2022, 15, 3114



Barriers to deployment of CCS?

* Consider each element separately:
— Cryogenic air separation invented in 1895
— Amine scrubbing was patented in 1932
— Large scale gas compression is well understood
— Over 8,000 km of CO, pipelines in the US, transporting approximately 68 Mtpa

— Several (Sleipner, In Salah, etc.) large scale CO, storage projects, operating for
extended periods of time (decades) have stored ~ 50 million tonnes of CO, to
date

* |nvestors do not share this perspective
— Policy dependant
— Heterogeneous
— Complex value chain




6 key risks to make or break project finance
L

Technology risk Lack of track record of commercial deployment. Is there
construction/delivery risk? Will the technology work as planned in this
context?

Revenue risk Is there a de-risked revenue stream? Are incentives sufficient? Are they

volatile? In the case of e.g., tax credits, as in the US, what is the advance
rate on these credits?

Regulatory risk Is the regulatory environment certain? Note this isn’t about stringency, its
about certainty!

Infrastructure risk Is both transport and storage infrastructure available? Who owns the cross
chain risk? Who is insurer of last resort?

Financial and regulatory risk Unfavourable tax/financial regulations

Reputational risk Lack of social licence to operate — key to environmental/climate justice.

Does BECCS improve the lives of fence line communities or reduce emission
of criteria pollutants? Is it “sustainable”?

Jeff Brown, et al., “Turning CCS Projects into Blue Chip Investments”, EFI, 2023
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Key project characteristics of successful CCS projects

POLICIES & PROJECT
CHARACTERISTICS

Carbon Tax

Tax Credit or
emissions credit

Grant Support

Provision by
Government or SOE

Regulatory
Requirement

Enhanced Cil
Recovery

Low Cost Capture

Low Cost Transport
and Storage

Vertical Integration

The companies in light grey
are under construction.

Reference: GCCSI (2019), Policy priorities to incentivise large scale deployment of CCS. https://www.globalccsinstitute.com/resources/publications-reports-research/policy-priorities-to-incentivise-large-scale-deployment-of-ccs/
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Outline

* Some conclusions



Some conclusions

* Net zero is not a zero sum game

e Technology evangelism and exclusion is unhelpful

* Perfect is absolutely the enemy of the good

* Climate change mitigation will not trump economic growth
* CCS and CDR appear to be necessary

* Existing technologies are more than adequate — the challenge is
developing investible business models
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