Imperial College London

Challenges for a net zero transition

Niall Mac Dowell Imperial College London niall@imperial.ac.uk

Outline

- Scene setting
- CCS where are we?
- Is CCS an R&D problem?
- The socio-economic dimension
- Thoughts on CCS project development
- Some conclusions

Outline

• Scene setting

- CCS where are we?
- Is CCS an R&D problem?
- The socio-economic dimension
- Thoughts on CCS project development
- Some conclusions

So, what does net zero mean?

The term net zero is so ubiquitous as to be meaningless

- Zero greenhouse gas emissions?
- Net zero greenhouse emissions
- No fossil carbon in the energy system?
- Only wind, water, and solar energy?

The Road to Net Zero

Countries with laws, policy documents or concrete timed pledges for carbon neutrality by target year

Source: Energy & Climate Intelligence Unit

statista 🗹

Net zero emissions target announcements

Greenhouse gas emissions

Greenhouse gas emissions include carbon dioxide, methane and nitrous oxide from all sources, including agriculture and land use change. They are measured in carbon dioxide-equivalents¹ over a 100-year timescale.

Source: Calculated by Our World in Data based on emissions data from Jones et al. (2023) Note: Land use change emissions can be negative. OurWorldInData.org/co2-and-greenhouse-gas-emissions • CC BY

1. Carbon dioxide-equivalents (CO₂eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse gas emissions, researchers express them in 'carbon dioxide-equivalents' (CO₂eq). This takes all greenhouse gases into account, not just CO₂. To express all greenhouse gases in carbon dioxide-equivalents (CO₂eq), each one is weighted by its global warming potential (GWP) value. GWP measures the amount of warming a gas creates compared to CO₂. CO₂ is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of that gas would generate ten times the warming effect as one kilogram of CO₂. Carbon dioxide-equivalents are calculated for each gas by multiplying the mass of emissions of a specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate CO₂eq over 100 years, we'd multiply each gas by its GWP over a 100-year timescale (GWP100). Total greenhouse gas emissions – measured in CO₂eq – are then calculated by summing each gas' CO₂eq value.

Greenhouse gas emissions

Greenhouse gas emissions include carbon dioxide, methane and nitrous oxide from all sources, including agriculture and land use change. They are measured in carbon dioxide-equivalents¹ over a 100-year timescale.

Source: Calculated by Our World in Data based on emissions data from Jones et al. (2023) Note: Land use change emissions can be negative. OurWorldInData.org/co2-and-greenhouse-gas-emissions • CC BY

1. Carbon dioxide-equivalents (CO₂eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse gas emissions, researchers express them in 'carbon dioxide-equivalents' (CO₂eq). This takes all greenhouse gases into account, not just CO₂. To express all greenhouse gases in carbon dioxide-equivalents (CO₂eq), each one is weighted by its global warming potential (GWP) value. GWP measures the amount of warming a gas creates compared to CO₂. CO₂ is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of that gas would generate ten times the warming effect as one kilogram of CO₂. Carbon dioxide-equivalents are calculated for each gas by multiplying the mass of emissions of a specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate CO₂eq over 100 years, we'd multiply each gas by its GWP over a 100-year timescale (GWP100). Total greenhouse gas emissions – measured in CO₂eq – are then calculated by summing each gas' CO₂eq value.

Global primary energy consumption by source

Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil fuel production by converting non-fossil energy into the energy inputs required if they had the same conversion losses as fossil fuels.

Source: Our World in Data based on Vaclav Smil (2017) and BP Statistical Review of World Energy OurWorldInData.org/energy • CC BY

Europe, excess deaths v average temperatures

Winter 2022-23 compared with 2015-19, three-week moving average

https://www.economist.com/graphicdetail/2023/05/10/expensive-energy-may-havekilled-more-europeans-than-covid-19-last-winter

*EU-27 (except Malta and Cyprus) plus Britain, Norway and Switzerland

Progress since the 2015 Paris Agreement

	2015	2021	Change
Net zero coverage	0	88%	Increase
Global energy use	150,000 TWh	163,000 TWh	~ 9% Increase
% Fossil energy used	86%	83%	~ 3% decrease
Absolute fossil energy used	130,000 TWh	136,000 TWh	~ 5% increase
CO ₂ emissions	53.66 Gt	54.59 Gt	~ 2% increase

Outline

- Scene setting
- CCS where are we?
- Is CCS an R&D problem?
- The socio-economic dimension
- Thoughts on CCS project development
- Some conclusions

Look again at where GHGs come from

The role of CCS in net zero is unequivocal

Role of CCS in Scenarios (2050)

CCS provides optionality in the transition

Technology adoption pathway

1,783,901

R. R. BOTTOMS PROCESS FOR SEPARATING ACIDIC GASES

Filed Oct. 7, 1930

University of Amsterdam

Observations of adsorption

1742 -1786 Carl Wilhelm Scheele

Ich trockenen zerrieben geleerte Blase vor. die Blase ausgedeh sie sich nicht ferne erkalten, und die] Kohlen zurück. D ein als die Kohlen. werden, und die L dem sie kalt gew absorbiret. Ich w lichen Erfolge.

INVENTOR Robert Roger Bottoms By Dian Funbank Hrech Fretn ATTORNEYS 6-224

CCS development: technology readiness level (TRL)

Solvent development has a long history...

Brandl, et al. (2022). Int J GHG Con, 120, 103771

Outline

- Scene setting
- CCS where are we?
- Is CCS an R&D problem?
- The socio-economic dimension
- Thoughts on CCS project development
- Some conclusions

Energy system optimisation (ESO) framework

Heuberger, C. F., et al. (2016). Energy & Environmental Science, 9 (8), 2497-2510, Heuberger, C. F. & Mac Dowell, N. (2018). Joule, 2 (3), 367-370, Heuberger, C. F., et al. (2018). Nature Energy, 3 (8), 634-640.

Energy system optimisation (ESO) framework ESC

Mersch, M., Markides, C. N., Mac Dowell, N., "The impact of the energy crisis on the UK's net zero transition" iScience, 2023, Ganzer, C and Mac Dowell, N, "Pathways to net zero for power and industry in the UK', Int J GHG Con, 2023

Energy system optimisation (ESO) framework ESO

No one size fits all

*) Seasonality is defined as the standard deviation of the hourly electricity demand Inner and outer circles are 2020 and 2050 peak demand, respectively

Pratama, Patrizio, and Mac Dowell, iScience, 2022

Discerning the probable from the possible..?

Quantifying the value of CCS (JAMALI)

Pratama and Mac Dowell, IEA CCC, 2021

Value ≠ cost

Value of CCS is context specific

What do we need from technology?

The power system is	
changing	

"+" \rightarrow "+++" = low \rightarrow high value

*modelled as minimum stable generation point, up-/down time

Technology Feature	Value in future power systems
High Efficiency	+
High Flexibility*	++
Low CAPEX	+++
Dispatchability	+++
Firm capacity/ancillary service provision	+++
Low OPEX	+
High Rate of Deployment	++

Should we believe in unicorns?

- Modelling often assumes perfect foresight
- This is not the world we live in...
- Can we trust in technological optimism?
- What is the least regrets strategy?

Perfect foresight capacity expansion

Imperfect foresight capacity expansion

Lead-acid battery Pumped Hydro Interconn. (IE) Interconn. (FR, NL) Solar PV Wind-Offshore Wind-Onshore BECCS CCGT-PostCCS Coal-PostCCS OCGT CCGT IGCC Coal Nuclear - foresight-go Carbon Intensity

-O- myopic-wait Carbon Intensity

If the "super tech" fails to materialise, we have an **overbuilt and underutilised** power system.

Myopia in planning affects operation and cost

Unicorn hunting

CCGT-CCS still appears to be a dominant technology

Is there a unicorn worth waiting for?

Outline

- Scene setting
- CCS where are we?
- Is CCS an R&D problem?
- The socio-economic dimension
- Thoughts on CCS project development
- Some conclusions

Value of CCS in future energy systems

Hackett, Industria Mundum, 2018 http://www.ccsassociation.org/news-and-events/reports-and-publications/clean-air-clean-industry-clean-growth/

Technology cost break-down

CCGT: Combined Cycle Gas Turbine **CCS**: Carbon Capture and Storage

Jobs and Economic Development Impacts (JEDI)

ESO - JEDI framework

Patrizio, Pratama and Mac Dowell, Joule, 2020

Least cost energy transition pathways

GenSto

PHSto

InterSto

Solar

Hydro

Interimp

Wind-Offshore Wind-Onshore

Patrizio, Pratama and Mac Dowell, Joule, 2020

Creating value with the transition

Trade-offs with SDGS goals: Poland

Trade-offs with SDGS goals: Spain

Trade-offs with SDGS goals: the UK

Outline

- Scene setting
- CCS where are we?
- Is CCS an R&D problem?
- The socio-economic dimension
- Thoughts on CCS project development
- Some conclusions

What is the cost of CCS?

Costs of capture based on IEA (2012b); Cost and Performance of Carbon Dioxide Capture from Power Generation. Paris: IEA. http://www.iea.org/publications/freepublications/publication/costperf_ccs_powergen.pdf

CO₂ capture is one element of the CCS system

A "few" key questions...

- Where is the store? 1.
- 2. What are the permitting requirements to develop the store?
- 3. Is the store proven?
- Who owns the store? 4.
- 5. Who will operate the store?
- Who will provide whole-life MRV for 6. the store?
- 7. How do you get to the store?
- What happens if, during project 8. operation, the store becomes this risk?
- 9. Are you the only one using the store, or are you part of a hub?
- 10. Who provides the CO₂ transport service?

- 11. What are the permitting and regulatory requirements to deliver the transport service?
- 12. What are the CO_2 purity requirements of the T&S operators?
- 13. What happens if, during project operation, the transport becomes unavailable for a period? Who covers this risk?
- 14. How much CO_2 is produced?
- 15. Is flue gas produced in a steady flow, dynamically, or batch-wise?
- unavailable for a period? Who covers 16. Including solids and trace elements, what is the composition of the flue gas?
 - 17. Is CO₂ concentration static, or dynamic?
 - 18. What are the options for CO₂

capture technology?

- 19. What is the basis for technology provision, i.e., total asset management, or other? What level of performance guarantee is provided?
- 20. How much does this cost? How have individual choices impacted cost? How can cost be minimised without increasing technology or engineering risk.
- 21. What is the business model?
- 22. How will you pay (balance sheet, grant, debt)?

23. ...

a: Generic asset development sequence

b: Counterparty risk and chicken-or-egg interdependency is successfully managed in an integrated carbon capture and storage project (6)

Uden, et al, Energy Environ. Sci., 2022, 15, 3114

Barriers to deployment of CCS?

- Consider each element separately:
 - Cryogenic air separation invented in 1895
 - Amine scrubbing was patented in 1932
 - Large scale gas compression is *well understood*
 - Over 8,000 km of CO_2 pipelines in the US, transporting approximately 68 Mtpa
 - Several (Sleipner, In Salah, etc.) large scale CO₂ storage projects, operating for extended periods of time (decades) have stored ~ 50 million tonnes of CO₂ to date
- Investors do not share this perspective
 - Policy dependant
 - Heterogeneous
 - Complex value chain

6 key risks to make or break project finance

Risk	
Technology risk	Lack of track record of commercial deployment. Is there construction/delivery risk? Will the technology work as planned in this context?
Revenue risk	Is there a de-risked revenue stream? Are incentives sufficient? Are they volatile? In the case of e.g., tax credits, as in the US, what is the advance rate on these credits?
Regulatory risk	Is the regulatory environment certain? Note this isn't about stringency, its about certainty!
Infrastructure risk	Is both transport and storage infrastructure available? Who owns the cross chain risk? Who is insurer of last resort?
Financial and regulatory risk	Unfavourable tax/financial regulations
Reputational risk	Lack of social licence to operate – key to environmental/climate justice. Does BECCS improve the lives of fence line communities or reduce emission of criteria pollutants? Is it "sustainable"?

Key project characteristics of successful CCS projects

Outline

- Scene setting
- CCS where are we?
- Is CCS an R&D problem?
- The socio-economic dimension
- Thoughts on CCS project development
- Some conclusions

Some conclusions

- Net zero is not a zero sum game
- Technology evangelism and exclusion is unhelpful
- Perfect is absolutely the enemy of the good
- Climate change mitigation will not trump economic growth
- CCS and CDR appear to be necessary
- Existing technologies are more than adequate the challenge is developing investible business models

EVERYTHING EVERYTHERE ALATONCE